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n recent years drug delivery implants have gain importance for long
term therapies which have some advantages like avoidance of first pass
metabolism, reduce dose and side effects of active substance with fluc-

tuations in blood levels.1

Calcium Phosphate Bone Cements in
Drug Delivery: Review

AABBSSTTRRAACCTT  In recent years, local drug administration has gain importance due to increase in the
success in the field of orthopedic surgery. Accordingly implants has been prepared in various forms
with different materials. Researches have been carried out regarding to their in vitro and in vivo
performances. Between orthopedic implant applications, cement forms have been found clinically
successful and calcium phosphate cements with their similarity to bone structure have gain atten-
tion in drug delivery due to their advantages such as injectability and fast setting time in low-tem-
peratures providing that their mechanical properties develop by combination of other biomaterials.
Several attempts have been made to include growth factors and morphogens within bioactive scaf-
folds to stimulate cellular adhesion, proliferation and differentiation, so as to promote bone regen-
eration. Additionally, enhancing further the functionality of these already complex cements by
loading drugs into them to treat bone disorders or to act on the surrounding tissues with an ade-
quate therapeutic concentration level and for a desired time frame is recognized as being highly ben-
eficial. Successful researches are available with especially to antibiotics, biphosphanates, growth
factors, anti-inflammatory and antimicrobial actives in the form of calcium phosphate cements and
this field is promising for new applications of the future for musculoskeletal diseases and defects. 

KKeeyy  WWoorrddss::  Drug delivery systems; biocompatible materials; bone cements; 
calcium phosphate; orthopedics

ÖÖZZEETT  Son yıllarda ortopedi alanında lokal ilaç verilişi, özellikle cerrahi mühalelerin başarısını
arttırması nedeniyle önem kazanmıştır. Bu doğrultuda çeşitli materyaller ile değişik formlarda im-
plantlar hazırlanmış, in vitro ve in vivo performanslarına yönelik araştırmalar yapılmıştır. Ortope-
dik implant uygulamaları arasında, klinik olarak çimento formları başarılı bulunmuş ve materyal
olarak kemik yapısı ile oldukça benzer kalsiyum fosfatlar, mekanik özelliklerinin diğer biyomater-
yaller ile geliştirilmesi kaydıyla ilaç salımında enjekte edilebilirlik, düşük sıcaklıkta hızlı sertleşme
gibi avantajları nedeniyle dikkat çekmiştir. Kemik rejenerasyonu teşvik etmek amacıyla, hücre yap-
ışması, çoğalması ve farklılaşması, uyarmak için biyolojik olarak aktif iskeleler içinde büyüme fak-
törleri ve morphojenlerin verilmesi amacıyla çeşitli girişimler yapılmıştır. İlaveten, kemik
bozukluklarını tedavi etmek veya çevre dokularda etki etmek üzere yeterli terapötik konsantrasyon
seviyesinin arzu edilen zaman dilimi içinde sağlanması amacıyla bu kompleks çimentolara ilaç yük-
lenerek işlevselliğinin arttırılması son derece faydalı olarak kabul edilmektedir. Başta antibiyotik-
ler olmak üzere bifosfonatlar, büyüme faktörleri, antiinflamatuarlar ve antimikrobiyallerin kalsiyum
fosfat kemik çimentosu formunda başarılı çalışmaları mevcut olup, ileriye yönelik kas ve iskelet
sistemi hastalık ve defektlerinde yeni uygulamalar açısından umut vericidir. 

AAnnaahhttaarr  KKeelliimmeelleerr:: İlaç dağıtım sistemleri; biyouyumlu materyaller; kemik çimentosu; 
kalsiyum fosfat; ortopedi
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In orthopedic surgery osteoclasts, one of the
major causes of bone lysis leading to implant failure
has been clinically proved that could be effectively
sponge out by decreasing the catabolic bone activity
provided with bisphosphonate group drugs. Due to
systemic delivery of bisphosphonate by injections
could not effectively reach to peri-implant region;
local drug delivery has been preferred.2 Drug deliv-
ery orthopedic implants particulary focus on bone
infections which is an important factor in the suc-
cess of orthopedic implants. Drug delivery with an
implant can be available either coated on an implant
surface, or incorporated in a biomaterials/cement
scaffold or included in beads (Figure 1). Between
those approaches most of clinical orthopedic appli-
cations were performed in cements successfully.2-5

Several attempts have been made to include
growth factors and morphogens within bioactive
scaffolds to stimulate cellular adhesion, proliferation
and differentiation, so as to promote bone regener-
ation.6-8 In addition, enhancing further the func-
tionality of these already complex matrices by
loading drugs into them to treat bone disorders or to
act on the surrounding tissues with an adequate
therapeutic concentration level and for a desired
time frame is recognized as being highly benefi-
cial.6,9-20

Three-dimensional bioactive bone scaffolds
can be fabricated by using bioceramics, biodegra-
dable polymers and their composites. Bioactive ce-

ramic scaffolds alone used in bone tissue engineer-
ing can serve as a delivery vehicle for drugs but the
drug release patterns are difficult to control. On the
other hand, biodegradable polymeric materials such
as poly(lactic-co-glycolic acid) (PLGA) and
poly(propylene glycol-fumerate)/methylmethacry-
late can be used to control the local delivery of
drugs. However, they can show impaired osteocon-
duction and they can provoke an adverse tissue re-
sponse owing to inflammation as a consequence of
acidic degradation.6,7,21-24 Inorganic materials are
promising alternatives to polymeric bone cements
and fillers because of their high chemical stability,
hydrophilic character, easy functionalization, large
surface area and ability to adsorb drugs. Owing to
the possibility of synthesizing ordered mesoporous
silica-based structures, inorganic particulate fillers
can achieve a controlled release of the adsorbed or
attached moiety. However self-supported structures
of those materials lack mechanical stability.25,26

Composite materials might combine for improve-
ment of mechanical properties and adjustable con-
trolled release of drug which can be obtained with
combination of polymeric and inorganic (hydrox-
yapatites, tricalcium phosphates and mesoporous
silicas) materials. Mechanically, a well-designed
composite material could simulate at best the be-
havior of natural bone, which is composed of an in-
organic (calcium hydroxyapatite) and an organic
(type I collagen and other non-collagenous pro-
teins) matrix.26 Thus, the smart combination of bio-
ceramics and biodegradable polymers can not only
improve the degradability of the inorganic material
and alter its mechanical/physical properties, but also
drug-release profiles can be controlled to a greater
extent rather than pure ceramics. There is a wide
range of different polymers that can be use for such
applications, having different degradation rates and
mechanisms, and a wide range of bioceramic/
biopolymer composite scaffolds is available for bone
tissue engineering.6,7,21,26-29

CALCIUM PHOSPHATE CEMENTS

GENERAL PROPERTIES

Calcium phosphates (CaPs) have good biocompat-
ibility, osteoconductivity and chemical properties

FIGURE 1: Drug delivery implant approaches A. Coating, B. Scaffold or Ce-
ment, C. Beads.2

(See color figure at 

http://www.turkiyeklinikleri.com/journal/eczacilik-bilimleri-dergisi/2146-944X/)
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make them suitable for bone-remodeling kinetics
and they can be resorbed by cells. They have
enough mechanical strength but they are brittle
and slowly degradable.6,30-32 Their osteoconductive
properties allowed them to use in orthopedics, den-
tal, ear, nose and throat surgeries.33 CaPs can be in
different forms such as ceramics, cements, com-
posites and thin coatings.33-35 Their performance
can be affected by some pathological situations
such as infection, irradiation, diseases etc. in terms
of the substitution and/or resorption process. To
prevent the undesirable results related pathologi-
cal situations, CaPs preferred to combine with ac-
tive molecules which represent the most current
alternatives to biological bone grafts and exist in
various forms such as powders, granules, ceramic,
cement and coatings.33 On the basis of composition,
synthetic CaPs presently used as biomaterials are
classified as presented in Table 1. 

Drug delivery bone cements should be bioac-
tive and resorbable to provide bonding to bone tis-
sue and substitution. Moreover injectablity is
desirable for ease of administration and better fit-
ting to the bone defect. Calcium phosphate ce-
ments (CPCs) meet above mentioned needs which
make them good candidates for clinical applica-
tions.37 The CPCs was first patent by Brown and
Chow in 1986.33,38 CPCs have more advantages such

as being noncytotoxic, promoting the development
of osteoconductive pathways, enough mechanical
strength for different applications and restore con-
tour. Furthermore, their low-temperature setting
reaction and intrinsic porosity allow for the incor-
poration of drugs into the cement. Fast setting time,
excellent mouldability, easy manipulation and in-
jectibility can perfectly fit the bone defect; their
low temperature in vivo self-setting capability is
important not to give harm to surrounding tissue
and provide no risk of infectious diseases allow to
prevent grafting failure.33,37,39-46

CPCs are composed of an aqua/aqueous solution
and CaPs or combiantions. Upon mixing of these
components, dissolution and precipitation into a less
soluble CaP has occurred and entanglement of the
growth of crystals provided the mechanical rigidity
of the cement.36,39,46 The prepared CaPs paste can be
placed into the damaged part of bone and generally
hardens less than 20 min at body temperature (37°C)
in situ and then displays limited solubility. Stability
and solubility of CaPs and their combinations is the
major collimator for the setting process which also
dependent upon the pH value of a cement paste.46

Various CPCs are currently commercially and many
more are in experimental stages.33

MECHANICAL PROPERTIES

Although having many advantages, CPCs have lim-
itations owing to their poor mechanical properties
and slow in vivo biodegradation.36 Mechanical
properties of CPCs such as strength, setting time,
porosity and swelling can be controlled by liquid-
to-powder ratio, pH of the liquid phase, powder
composition, chemistry, crystallinity, particle size,
presence of nucleating agents in the reaction sys-
tem are other important factors for mechanical
properties.36,47-52

The current commercial CPCs remain dense
after implantation and insufficient macroporosity
will take advantage of 3D cell colonization and
tissue ingrowth.33 In this context, recently CPCs
have been designed with polysaccharides or re-
sorbablefibers which are supposed to develop chan-
nels suitable for bone ingrowth by dissolution of
these particles or fibers.33,53-55

Calcium phosphates Abbreviations Mineral name

Monocalcium phosphate monohydrate MCPM –

Monocalcium phosphate MCP –

Dicalcium phosphate dihydrate DCPD Brushite

Dicalcium phosphate DCP Monetite

Octacalcium phosphate OCP –

alpha-Tricalcium phosphate α-TCP –

beta-Tricalcium phosphate β -TCP Whitelockite

Amorphous calcium phosphate ACP –

Calcium-deficient hydroxyapatite CDHA –

Carbonated apatite CA Dahlite

Hydroxyapatite HA –

Oxyapatite OXA –

Tetracalcium phosphate TTCP Hilgenstockite

TABLE 1: Calcium phosphate types, abrreviations and
mineral names.36
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Polymers are usually added to CPC to increase
the mechanical properties and control degrada-
tion.36,56-58 Increased setting time and reduced
workability are also reported with increased me-
chanical properties.36,59-61 Polymeric materials such
as chitosan,62,63 alginate,64,65 gelatin,66-68 poly(acrylic
acid),69 polymethylmethacrylate,70 PLGA,71 pectin72

have been used to improve the anti-washout and
handling properties of CPCs as these materials tend
to disintegrate on early contact with blood and
other fluid.36 The undesired effects of organic ad-
ditives reported as delay in setting time and de-
crease in  mechanical strength.51 The setting
reaction of CPCs can be affected or modified by
adding an active molecule to the powder phase or
the liquid phase which could be resulted as a
change in physico-chemical and mechanical prop-
erties.37,69,73-77 In general, in apatitic cements, an-
tibiotics have a tendency to increase setting times
and reduce the mechanical strength of the ce-
ments.37,73-76 This decrease of mechanical strength
can be attributed to different factors, such as in-
creased porosity or to some inhibition of the set-
ting reaction, as suggested by the presence of
certain amount of reactants in the set cements
when the antibiotic quantity increases. In other
cases the change in the setting properties are
caused by some chemical interaction with the drug,
which can modify the kinetics of the dissolution-
precipitation reaction and the morphology of the
precipitated crystals.37 The highly microporous
structure of CPC can be obtained different liquid-
to-powder ratios, after setting, allows it to incor-
porate drugs into its structure. More compacted
cement microstructure with smaller size of pores
can be obtained by decreasing the liquid-to-
powder ratio.The drug can be introduced either in
the liquid or the solid phase of the CPC, but the
physicochemical properties of the drug or protein
must be considerated for do not change during the
chemical reaction and setting of CPC.36,52,78 Studies
particularly for antibiotics showed the relation be-
tween drug concentration and CPCs structure by
means of incorporated drug effects on the structure
of CPCs.36,79-81 A morphological change and de-
crease in compressive strength of CPC with in-

creases in tetracycline concentration was reported
and referred as the strong affinity of tetracycline
hydrochloride and addressed this limitation to
some extent by treating tetracycline hydrochloride
with CaP solution and then incorporating it into
CPC.36,80 A maximum of 7% cephalexin monohy-
drate was incorporated without affecting the me-
chanical properties of CPC and also observed an
increase in setting time and decrease in crys-
tallinity of CPC.79 An increase in setting time was
also reported due to gentamicin sulphate incorpo-
ration into the CPC matrix.81 Drug release from
CPC depends also on the intrinsic porosity, which
is consequence of processing parameters.36,78,81 De-
spite excellent osteoconductivity and good appli-
cability, CPCs use in drug delivery is limited which
is mostly due to the changes in the final properties
of CPCs resulting from the drug incorporation,
changes in the drug activity and its bioavailabil-
ity.36

CPCs are available to use both as bone substi-
tutes and drug carriers for treatments of different
skeletal diseases and bone fracture healings. The
drugs can be incorporated throughout the whole
material volume of CPCs without losing activity
and denaturalization by adding them into one of
the two cement phases which can facilitate the re-
lease of drugs for more prolonged times. Several
studies related to the application of both commer-
cial and experimental CPCs as drug carriers for
local or systemic treatments for different durations
have been published.37

DRUG RELEASE BEHAVIORS

Release behaviors from CPCs are influenced by
physico-chemical properties such as drug solubility
and chemical property, microstructure, crys-
tallinity, density and porosity of the final CPC.
Changes during hydration and setting are also ef-
fective on drug-cement interactions, and degrada-
tion behavior of CPCs. If a polymer is used in the
CPC matrix, drug release kinetics also depends on
its solubility, molecular weight, drug-polymer in-
teractions and degradation rate. Generally, de-
pending on the drug release behavior, drug
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delivery devices can be categorized mainly as dif-
fusion controlled and activation controlled systems
which also can be defined as i.diffusion controlled
ii. chemical processes controlled, and iii. externally
or electronically controlled.1,36,41 The degradation
of drug incorporated CPC matrix is usually a slower
process than the drug release kinetics, thus  release
kinetics is generally a diffusion dominated process
from the biodegradable CPCs. Degradation related
release is also a simultaneous process with this dif-
fusion.36,82 Figure 2 illustrates the schematic of drug
release from a CPC loaded with drug molecules.36

Diffusion dominated release kinetics from a matrix
can be described by the square root of time kinet-
ics namely Higuchi law which is based on Fickian
diffusion under the assumption that drug molecules
are uniformly dispersed in a homogeneous matrix.
For longer duration, release kinetics does not al-
ways follow the Higuchi law due to other factors
such as changes in cement matrix composi-
tion.36,69,82,83 Hydrophobic-hydrophilic interactions
between drug-polymer and drug-release medium
also could influence the release kinetics, which
might not follow simple power laws.36

TREATMENT APPROACHES FOR CPCS 

Biocompatibility and nonexothermic behavior of
CPCs are important factors in drug corporating at-
temps and CPC used for antibiotic delivery gives
good clinical results33,39,84-87 except some resistance
strains. Avoidance of the routine use of such drug
loaded cements and restricting their use only to
multiresistant strains are recommended by some
clinicians.33,88-90 On the other hand further studies
clearly showed that CaP matrices are good carriers
for controlling the catabolic bone remodeling
drugs.2,91-93

CPCs can be used for local drug delivery for the
treatment of different skeletal diseases such as bone
tumors, osteoporosis or osteomyelitis. The types of
drug-eluting implants used in traumatology and in
orthopedic surgery include: ii)) antibiotic-loaded
bone cements and fillers used to prevent infection
(osteomyelitis) in orthopedic surgery; iiii))  cements

loaded with osteoinductive molecules such as
growth factors to favor the osseointegration of the
implant; and iiiiii)) devices loaded with chemothera-
peutic agents, antiestrogens or anti-inflammatories
used to treat different pathologies including os-
teosarcomas and degenerative diseases.26

In this context, many kinds of drugs/active
molecules, including antibiotics,3,79,94-96 chemother-
apeutics,36,97-99 growth factors,4,36 proteins/amino
acids,36,100,101 antimicrobial peptides (AMPs),36,102,103

nonsteroidal analgesic and anti-inflammatory
drugs (NSAIDs)104 and bisphosphonates90,105,106 have
been incorporated into CPCs for various applica-
tions. Table 2 refers some research studies on CPCs
with different drugs published in last decades.

CONCLUSION

As a conclusion development of new dosage forms
by using biometerials is important in drug delivery
since it is hard to develop new drug molecules. In
this respect drug delivery either local or systemic
via bone cements, particularly with CPCs owing to
their biocompatibility, noncytotoxicity, osteocon-
ductivity, low-temperature setting reaction and fast
setting time, mouldability, easy manipulation and
injectibility would make them good alternative and
beneficial application in musculoskeletal diseases
and defects.

FIGURE 2: Drug delivery implant approaches A. Coating, B. Scaffold or Ce-
ment, C. Beads.2

(See color figure at 

http://www.turkiyeklinikleri.com/journal/eczacilik-bilimleri-dergisi/2146-944X/)
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